1. let p(x,y) be a proposition function , prove or disprove
some x all y p(x,y)-> all y some x p(x,y) is always true
這應該是true吧 但要怎麼證明?
2. two dice are identical if they become excatly teh same after proper rotations and flips,
how many different dice are there?
想說假設固定骰子底面不動,隨便給一個數字,因為固定底面所以只剩下左右旋轉
所以我覺得是 (5*4*3*2)/4=30 但不知道對不對 ?
3. a binary relation R on a set s is a subset of s^2,the cardinality of s is n
a.how many equvilant relations are there on s?
這題我想法是 等價關係可以對應到分割 而 s 的power set有2^n
所以等價關係有 2^(n-1) 種?
b.let R1 be a relfexive cloure of R .then
R1={(a,b)屬於s^2: } 裡面要填什麼?
c.let R2 be a symmetric cloure of R .then
R2={(a,b)屬於s^2: } 裡面要填什麼?
d.prove the transitive cloure of RUR1UR2 is an equivalent relation
最後還有圖片裡的那一題....
感謝感謝解答了 問題好多... orz