2010-03-10

boolean algebra問題


Given any Boolean function f(x1,...xi,...,xn) in switching algebra,
what is the smallest (in terms of onset sizes) Boolean function g(x1,...xi,...xn)
such that g(x1,...,,0,...,xn) = g(x1,...,,0,...,xn)and (f and~g) = 0? Express g using f, Boolean connectives (and,or,~), and/or quantifers (for all ,exist).

ps h=for all xi(f(x1,...xi,...,xn))=f(x1,...,0,...,xn) and f(x1,...,1,...,xn)
h=exist xi(f(x1,...xi,...,xn))=f(x1,...,0,...,xn) or f(x1,...,1,...,xn)
也介是說對xi這個變數做quantifer

2 則留言:

線代離散助教(wynne) 提到...

抱歉喔可能因為符號不是很好打, 所以我看不太懂你打的東西, 可以麻煩你註明出處好讓我可以看原題嗎? 或者請你再檢查一下內容

闇風落雨 提到...

我上傳圖片到網頁上,你看看http://media1.youshare.com/uploads/01/Guest/435a961496d29a53.JPG?key=ab60a0421d766c19f79f3c88c2d4624f
http://www.youshare.com/Guest/435a961496d29a53.JPG.html