for each fεC[0,1] define L(f) = F, where F(x) = ∫x f(t) dt 0<= x <= 1. L is a linear transformation from C[0,1] to C[0,1]. Are L(1), L(x), and L(x2) linearly independent? Prove your answer.
想請問一下這個問題要怎麼處理?謝謝
Research Space for Linear Algebra & Discrete Mathematics
2 則留言:
假設L(1),L(x),L(x^2)的線性組合是零函數, 找幾個區間中的值代入x都要等於零, 解方程式證明其係數皆為零, 則為linearly independent
瞭解了,謝謝。
張貼留言