2011-01-23

請問幾個第2次模擬考的問題

1.If the real matrix A is m*n and has the property A^T*A=I, then for any vector x in Rm, x-AA^Tx is orthogonal to the column space of A.這題是true

這題看來是正交矩陣,但我推不大出來為何正交…因為是正交矩陣…所以x-AA^Tx應該是屬於N(A^T)或N(A)嘛?

2.If A is an n*n real matrix such that x^TAx = 0, for all x in Rn, then A=0. 這題是false

這是因為x有可能是0對嗎?若加上條件x≠0,應該就成立吧?

14 則留言:

Allen 提到...

1.
其實是因為A^T*A=I 這句話 才知道是正交矩陣 你可以翻翻筆記 老師那時候有畫一個表格的

線代離散助教(wynne) 提到...

1. A^T(x-AA^Tx)
= (A^T)x - (A^T)A(A^T)x
= (A^T - (A^T)A(A^T))x
= (A^T - A^T)x
= 0
=> x-AA^Tx is in N(A^T)
Since N(A^T) is the orthogonal complement of R(A),
x-AA^Tx is orthogonal to the column space of A

2. It's still false even when it's "for all x≠0", ex:
Given any x=[x1 x2]^t, let A=[0 1; -1 0]
then x^tAx = -x1x2+x1x2 = 0

Kai 提到...

請問怎麼發文阿
我找了好久
抱歉在這發問...

線代離散助教(wynne) 提到...

如果您已通過身分認證, 用gmail帳號登入之後在首頁右上方就可以看到發新文章的按鈕, 若尚未通過認證, 從首頁右方的公告裡最下面的那一篇文章點進去看就可以知道寄email認證的方法

Sean 提到...

1.感謝助教的回覆,我有想到垂直N(A^T),卻沒想到拿來乘A^T,殘念…

2.請問第2題這個x^T*A*x,好像是在算正(半)定時常會用的東西,而A≠0有什麼定理或課本哪裡有相關資料可以參考嗎

Sean 提到...

sorry~~又新增一個問題,麻煩幫幫忙
1.Suppose A is symmetric positive definite and Q is an orthogonal matrix. T or F
(a)Q^T*A*Q is a diagonal matrix這題為何是false呢?
(b)Q^T*A*Q is symmetric positive definite這題是true,是指正定對稱矩陣乘正交矩陣仍為正定對稱矩陣嗎?書上好像找不到相關的定理
(c)Q^T*A*Q has the same eigenvalues as A這題是true,這應該就是可對角化,所以有eigenvalue吧,可是Q是正交矩陣又不一定是A的eigenvector
(d)e^-A is symmetric positive definite,這題也是True,這好像也是對角化的應用,麻煩高手幫忙解答一下,感謝

線代離散助教(wynne) 提到...

(a) A is orthogonal diagonalizable, but in here, the columns of Q might not be the orthonormal eigenvectors of A

(b) If you couldn't come up with something you've learned, you can try to prove it, just like both of the problems that you asked before

Since A is symmetric and positive definite => ((Q^T)AQ)^T=(Q^T)AQ and (x^T)((Q^T)AQ)x=((Qx)^T)A(QX)>0, therefore (Q^T)AQ is symmetric positive definite

(c) Let P=Q, B=(Q^T)AQ, then P^-1AP=B, thus A is similar to B, in this case they will have the same eigenvalues

(d) it's similar to (b) because of the property of similarity

shun 提到...

不好意思 我也想請問一下
1.If the null space of A and B are the same, then A is row equivalent to B 為甚麼答案是False

2.If a vector space is spanned by a set of n vectors, then every set of more than n vectors must be linearli dependent.答案是True
我的想法是在R3*3中 V=span{e1,e2}但{e1,e2,e3}:LI 所以是false 請問為甚麼這題是True?
感謝助教!!

線代離散助教(wynne) 提到...

1. This one is TRUE, since N(A)=N(B) => R(A^T)=R(B^T)

2. I think what it means is that every set of more than n vectors "in V" must be linearly dependent, anyway you are right, the question is not clear

Sean 提到...

嗯嗯~~了解了~~下次我會試著自己證證看的~~謝謝助教

pi 提到...

不好意思我想請問一下
資工所第二次模擬考數學的第三題
題目說要find all solutions
是否應該要寫通解
可是答案只有70跟37

我覺得有點疑惑
謝謝

線代離散助教(wynne) 提到...

這裡寫 x=70 (mod 71) 的意思 x 的解集合為 {...,-1,70,141,...}, 同裡, y 的解集合為 {...,-34,37,108,...}, 所以解答確實有把所有的解寫出來

pi 提到...

那若是我的答案寫x=70+71t
y=37-71t
這樣是否可以?

線代離散助教(wynne) 提到...

可以