2010-02-24

[離散] - 布林代數2

2.Suppose that(R,+,.)and(S,⊕,⊙) are two rings
with zero element Zr and Zs respectively.
Given a ring homorphism f:R→S,let K={aεR|f(a)=Zs}
Prove that
(a)(K,.,+) is a ring
(b)K is an ideal of R

謝謝

5 則留言:

線代離散助教(wynne) 提到...

(a) 證 (K,+,.) 為 (R,+,.) 之 subring: ∀ a,b∈K,
(i) f(a-b)=f(a)-f(b)=0∈K
(ii) ∀ a,b∈K, f(ab)=f(a)⊙f(b)=0∈K
所以 (K,+,.) 為 ring
(b) ∀ a∈K, b∈R, 因為 f(ab)=f(ba)=0,
所以 K is an ideal of R

Chesley 提到...

謝謝助教

Chesley 提到...

(i) f(a-b)=f(a)-f(b)=0∈K
^^^
這邊的 - 是不是要有圈圈,因為是右邊的運算

pai 提到...

Prove that
(a)(K,.,+) is a ring
(b)K is an ideal of R
題目問"(K,.,+)" 乘法和加法是題目有打錯嗎?不然應該連"(K,.,+)" 都不是環了吧@@

線代離散助教(wynne) 提到...

Tse: 是的, 我想你應該知道所以我就懶的打了

pai: 他應該只是放反了