Research Space for Linear Algebra & Discrete Mathematics
以空間的觀點來看, 確實只能說成同構, 不過一般考試會這樣問都是不分行列的, 就是說R(A) = R(A^T)的意思一樣, 回答True會比較恰當, 然後括號說明一下即可
老師,可不可以這樣證明A invertible, such thatA~>Inxnrow vectors A1,...,An is L.I.{A1,...,An} span R^ncolumn vectors is a1,...,anbut Ai = ai for all i{a1,...,an} span R^nsuch that RS(A) = CS(A)
張貼留言
2 則留言:
以空間的觀點來看, 確實只能說成同構, 不過一般考試會這樣問都是不分行列的, 就是說R(A) = R(A^T)的意思一樣, 回答True會比較恰當, 然後括號說明一下即可
老師,可不可以這樣證明
A invertible, such that
A~>Inxn
row vectors A1,...,An is L.I.
{A1,...,An} span R^n
column vectors is a1,...,an
but Ai = ai for all i
{a1,...,an} span R^n
such that RS(A) = CS(A)
張貼留言