2009-03-12

[離散][四版習題詳解] P.369 6-74

要用e<=3v-6先決條件不是G是connected?為何解答可以直接用?

由以下意見,還是無法得到滿意的問題解答,看意見2

5 則留言:

Kyle 提到...

The assumption is that G is connected and planar. If G is not connected, then you can apply this to each component, say
e_i <= 3n_i -6. Summing up obtains |E(G)| <= |V(G)| - 6k, where k is the number of components. But since n-6k is bounded above by n-6, you still have e <= 3n-6.

好奇想問 提到...

應是|E(G)| <= 3|V(G)| - 6k

由此bounded在|V(G)|>=2,題目點數11以上,但是對一個component來說,假設v=1,e=0,e<=3v-6不合,課本推廣7的先決條件是給e>=2時e<=3v-6,所以不能直接用在任意component。

黃子嘉 提到...

阿凱的意思是說, 當不是connected時邊數只會更少, 因為是upper bound, 所以不等式仍然成立, 這一題是用矛盾證法, 假設G為connected planar, 則e <= 3v - 6, 再一次, 當G不為connected時, 它的邊數比connected時少, 所以e <= 3v - 6仍成立, 同理G^c也是如此, 我想這樣子講應該有比較清楚一些了

好奇想問 提到...

再把每個component的e_i <= 3n_i -6加成
|E(G)| <= |V(G)| - 6k前e_i <= 3n_i -6未必成立,反例就是n_i=1,e_i=0

黃子嘉 提到...

並不需要討論每個component, 只需想成當connected時e <= 3v - 6, 若graph並不為conneced, 它的邊數並不會比connected多即可, 例可可以在二個componet之間多加一個邊就會變成connected, 但不會影響到planar graph的特性