2008-12-02

[LA 碩士模擬考]

a) An elementary matrix could be an orthogonal matrix
為什麼是錯的呢? Identity matrix 不行麻 ?

b) If a matrix U has orthonormal columns, then UU^T = I
這題錯在哪呢

c) A least-square solution of Ax = b is the vector Ax' in columns space of A that is closest to b, so that b-Ax' <= b-Ax for all x這題錯在哪呢 ?

d) The set of all polynomials p(x) in P4 such that p(1) = 0, is it a subspace of P4 ?
可否舉個反例謝謝.

3 則留言:

  1. (a)因為是用could, 所以是對的
    (b)這裡的U未必是方陣, 所以UU^T = I表示orthonormal row, orthonormal column應該是U^TU = I
    (c)Least square solution應該是x, 不是Ax, Ax指的是正投影
    (d)這個也是subspace

    看來解答有二個地方有錯, 我會叫他們改, 考卷應該還在改, 謝謝您的提醒

    回覆刪除
  2. 所以答案請改成
    (a) True
    (b) False
    (c) False
    (d) True

    ps: 考試愈來愈近了, 大家都要加油, 有問題大家一起討論

    回覆刪除