2007-07-24

[離散四版]power set 的問題

p1-85
的第20題的(d)小題
答案應該是true
但是解答寫的是false

11 則留言:

  1. 大大應該是看錯了
    老師的解答中有詳細的說明
    {A}交集P(A)為{{a}}
    而A為{a}
    這兩個是不同的集合
    題目問{A}交集P(A)=A
    不是{A}交集P(A)={A}

    回覆刪除
  2. 作者已經移除這則留言。

    回覆刪除
  3. 集合∩集合=集合 (正確)
    集合∩集合=元素 (錯誤)

    在{}裡你找到有共同的A元素,但別忘了最後要寫時,還要加上{},即{A}

    ex:
    A={1,2,3}
    B={1}
    A∩B={1} (正確)
    A∩B=1 (錯誤)

    ★問題出在於人看到{}裡有相同東西,就粗心的填下去了。若是換成數字型式,一般人會直覺式的加上{},但若換成未知數型式,則容易粗心犯錯。

    回覆刪除
  4. 老師、各位同學好,我也有另一個問題要問:

    像在(e)選項中,老師的解答是,
    取A={φ,a} ∴P(A)={φ,{φ},{a},{φ,a}}
    A-P(A)={a}≠A

    這是老師舉的其中一個例子,例若是我是舉這樣的例子呢?為何結果又不同了呢?why??
    ex:
    取A={1} ∴P(A)={φ,{1}}
    ∴A-P(A)=A
    (→why?這不就中箭了嗎?為何會這樣結果不同呢?)

    回覆刪除
  5. 老師上課說過的:證明一個東西是對的,要去證明,證明一個東西是錯的舉反例
    我想您的問題應該是for all和存在
    一個東西是True的話,要"for all" case
    一個東西是False的話,只要"存在"一個CASE讓他無法成立,就是False了
    For all和存在,老師上課講解證明或者上到邏輯的時候都會講解到
    舉個簡單的例子,若只要舉出對的例子就可以證明是True的話。那我可以用兩個單位矩陣相乘證明矩陣乘法具交換性。
    以上給閣下參考

    回覆刪除
  6. To:rex
    謝謝您,我懂了。
    這意思說,要證明一個人是完美的,要證明所有的可能性;但要否定掉一個人卻很容易只要找出一個缺點,就可以證明這個人是不完美的囉!

    對了,接著(e)這個問題我再問下去,像若又舉例個未知數,這次不舉數字了:
    A={a},∴P(A)={φ,{a}}
    A-P(a)=? (找不到元素沒得減,怎麼減呀=.=)

    記得看過一個例子:
    A={1,2}, B=(紅色、綠色)
    A-B=A (B找不到有A的元素可減,所以等於A)

    那如法泡製的話,A-P(A)={a}-{φ,{a}}=A
    見鬼了>_<,安怎會這樣呢?還是答是φ?

    回覆刪除
  7. 補充:
    在(e)小題中,老師怎麼想到要找A=(φ,a)
    ,而不找A={a}呢?非得要加個φ,Why?

    回覆刪除
  8. 集合的減法雖然看起來很像減去共同元素
    但真正的定義應該是這樣:
    A-B的集合要蒐集的元素,為屬於A且不屬於B的元素
    您的問題應該是在這裡,所以(e)是這樣的:
    A-P(A)={a}-{φ,{a}}
    很容易可以看出屬於A且不屬於B的元素是a
    故A-P(A)為{a}(集合相減後仍為集合)
    這只能說你又找到了一個可以讓它成立的例子
    不能說它是True,反例老師的答案有
    只要有一個反例它就是False

    至於老師為什麼會知道要舉這反例?
    因為他超強的,經驗值多我們太多了

    回覆刪除
  9. 其實這題(d)和(e)是比較漂亮的一題,我在解(e)時只用一般的正整數套下去,結果對解答才知道
    還有一些情況要考慮
    case 1:A={{},a}
    case 2:A={{}}
    case 3:A={1,2}
    套用在(d)和(e)時可以發現
    (d){A}∩P(A)={A}
    (e)會有{a},{},{1,2}等答案

    回覆刪除
  10. 恩恩,我也覺得(e)出的不錯,會覺得是對的

    回覆刪除
  11. 作者已經移除這則留言。

    回覆刪除